	►		Quad: document processor

	1 	Installing Quad & Quadwriter
	2 	What is Quad?
	3 	What is Quadwriter?
	4 	Quadwriter quick tour
	5 	Quadwriter: developer guide
	6 	Quad: the details
	7 	What are your plans for Quad?

	Quad: document processor
	1 Installing Quad & Quadwriter
	2 What is Quad?
	2.1 How does Quad work?
	3 What is Quadwriter?
	4 Quadwriter quick tour
	4.1 Quadwriter & Markdown
	4.2 Quadwriter & HTML
	4.3 Quadwriter & Q-expressions
	4.4 Setting section-level attributes
	4.5 Invoking Quadwriter as a library
	4.6 Combining Quadwriter with Pollen
	4.7 Quick tour complete
	5 Quadwriter: developer guide
	doc
	5.1 Q-expressions
	5.2 Markup
	5.3 Hard breaks
	line-break
	column-break
	page-break
	para-break
	section-break
	5.4 Drawing quads
	line
	text
	5.5 Attributes
	5.5.1 Document-level attributes
	output-path
	pdf-title
	pdf-author
	pdf-subject
	pdf-keywords
	5.5.2 Section-level attributes
	page-size
	page-orientation
	page-width
	page-height
	page-margin-top
	page-margin-bottom
	page-margin-left
	page-margin-right
	page-margin-gutter
	page-number-start
	page-side-start
	column-count
	column-gap
	footer-display
	footer-text
	5.5.3 Block-level attributes
	inset-top
	inset-bottom
	inset-left
	inset-right
	border-inset-top
	border-inset-bottom
	border-inset-left
	border-inset-right
	border-width-top
	border-width-bottom
	border-width-left
	border-width-right
	border-color-top
	border-color-bottom
	border-color-left
	border-color-right
	background-color
	space-before
	space-after
	keep-first-lines
	keep-last-lines
	keep-with-next
	line-align
	first-line-indent
	line-wrap
	hyphenate
	clip
	image-file
	image-alt
	image-height
	image-width
	5.5.4 Positioning attributes
	repeat
	parent
	anchor-from-parent
	anchor-to
	5.5.5 Font attributes
	font-size
	font-family
	font-color
	font-bold
	font-italic
	font-underline
	font-features
	font-tracking
	font-baseline-shift
	font-case
	5.5.6 Other attributes
	display
	line-height
	draw-debug
	5.6 Query strings
	5.7 Rendering
	render-pdf
	5.8 Fonts
	5.8.1 Default font families
	text
	heading
	code
	blockquote
	default
	fallback-emoji
	fallback-math
	fallback
	5.8.2 System fonts
	5.9 Colors
	5.10 Utility
	view-output
	6 Quad: the details
	6.1 Data model: the quad
	6.2 Wrapping
	6.3 Layout model
	6.4 Rendering
	7 What are your plans for Quad?
	7.1 Getting more help
	7.2 Why is it called Quad?

8.12

 top contents ← prev up next →
Quad: document processor🔗ℹ
Matthew Butterick <mb@mbtype.com>

Quad is in progress. It works, but it is unstable — I am still changing things, small and large — and thus I make no commitment to maintain the API in its current state.

1 Installing Quad & Quadwriter🔗ℹ

At the command line:

	raco pkg install quad

After that, you can update the package like so:

	raco pkg update quad

Or, without the command line: Launch DrRacket. Use the File → Install Package ... command to install quad.
Either way, quadwriter is installed as part of the quad package.
If you’re new to Racket and want to configure your system to use the terminal commands, follow the instructions here.

2 What is Quad?🔗ℹ
A document processor, which means that it:
	Computes the layout of your document from a series of formatting codes (not unlike a web browser)

	Renders to PDF (not unlike a word processor).

For instance, LaTeX is a document processor. So are web browsers. Quad borrows from both traditions — it’s an attempt to modernize the good ideas in LaTeX, and generalize the good ideas in web browsers, while bypassing some of the limitations of LaTeX (e.g., no Unicode) and of web browsers (e.g., performance and error recovery are valued above all).
Document processors sit opposite WYSIWYG tools like Microsoft Word and Adobe InDesign. There, the user controls the layout by manipulating a representation of the page on the screen. This is fine as far as it goes. But changes to the layout — for instance, a new page size — often require a new round of manual adjustments.
A document processor, by contrast, relies on markup codes within the text to determine the layout programmatically. Compared to WYSIWYG, this approach offers less granular control. But it also creates a more flexible relationship between the source and its possible layouts.
Another benefit of document processors is that it permits every document to have a high-level, text-based source file that’s independent of any particular output format.
Much of the font-parsing and PDF-rendering code in Quad is adapted from FolioJS by Devon Govett. I thank Mr. Govett for figuring out a lot of details that would’ve made me squeal in agony.
2.1 How does Quad work?🔗ℹ
Quad produces PDFs using three ingredients:
	A font engine that handles glyph shaping and positioning using standard TTF or OTF font files.

	A layout engine that converts typesetting instructions into an output-independent layout — e.g., putting characters into lines, and lines into pages.

	A PDF engine that takes this layout and renders it as a finished PDF file.

For the most part, neither Quad nor Quadwriter rely much on racket/draw. In particular, Quad completely ignores Racket’s PDF-drawing functions, which are provided by Pango, because of major shortcomings in the kind of PDFs it produces (for instance, it doesn’t support hyperlinks).
3 What is Quadwriter?🔗ℹ
A demo app built with Quad. It takes a text-based source file as input, calculates the typesetting and layout, and then outputs a PDF.
You can fiddle with it & then submit issues and feature requests at the Quad repo.
4 Quadwriter quick tour🔗ℹ
Open DrRacket (or whatever editor you prefer) and start a new document with #lang quadwriter/markdown as the first line:
"test.rkt"

	#lang quadwriter/markdown
	Brennan and Dale like fancy sauce.

Save the document. Any place, any name is fine.
Run the document. You’ll get REPL output like this:
quadwriter: atomize: 2ms
quadwriter: hyphenate: 1ms
quadwriter: line-wrap: 21ms
quadwriter: col-wrap: 0ms
quadwriter: page-wrap: 0ms
quadwriter: position: 1ms
quadwriter: draw: 75ms
quadwriter: wrote PDF to /Users/Desktop/test.pdf

Congratulations — you just made your first PDF. If you want to have a look, either open the file manually, or enter this command on the REPL, which will open the PDF in your default viewer:
	> (view-output)

Next, on the REPL enter this:
	> doc

You will see the actual input to Quadwriter, which is called a Q-expression:
'(q () (q ((page-margin-left "120") (page-margin-top "80") (page-margin-bottom "120") (font-family "text") (line-height "17")) (q ((keep-first-lines "2") (keep-last-lines "3") (font-size "1em") (character-tracking "0") (hyphenate "true") (display "g49598")) "Brennan and Dale like fancy sauce.")))

In the demos that follow, the input language will change slightly. But the PDF will be rendered the same way (by running the source file) and you can always look at doc or use view-output.
4.1 Quadwriter & Markdown🔗ℹ
I don’t recommend that writers adopt Markdown for serious projects. But for goofing around, why not.
Our first version of "test.rkt" had one line of plain text:
"test.rkt"

	#lang quadwriter/markdown
	Brennan and Dale like fancy sauce.

Behind the scenes, quadwriter/markdown is doing more heavy lifting than this sample suggests. We can type our source in Markdown notation, and it will automatically be converted to the appropriate Quad formatting commands to make things look right.
For instance, try this sample, which combines a Markdown heading, bullet list, code block, and bold and italic formatting:
"test.rkt"

	#lang quadwriter/markdown
	# Did you know?
	
	__Brennan__ and **Dale** like:
	
	* *Fancy* sauce
	* _Chicken_ fingers
	
	```
	And they love to code
	```


You’re welcome to paste in bigger Markdown files that you have laying around and see what happens. As a demo language, I’m sure there are tortured agglomerations of Markdown notation that will confuse quadwriter/markdown. But vanilla files should be fine.
Back to the demo. Curious characters can do this:
	> doc

To see this:
'(q
 ()
 (q
 ((page-margin-left "120") (page-margin-top "80") (page-margin-bottom "120") (font-family "text") (line-height "17"))
 (para-break)
 (q ((font-family "heading") (first-line-indent "0") (display "block") (font-size "20") (line-height "24.0") (border-width-top "0.5") (border-inset-top "9") (inset-bottom "-3") (inset-top "6") (keep-with-next "true") (id "did-you-know")) "Did you know?")
 ···

This is the first part of the Q-expression that the source file produces when it runs and exports via doc. This Q-expression is passed to Quadwriter for layout and rendering.
Yes, you can generate your own Q-expressions by other means and pass them to quadwriter for layout & rendering. See render-pdf.

Mac OS note: I have no connection to the Skim PDF reader, but it has an auto-refresh feature that monitors a PDF for changes. This cooperates nicely with Quadwriter during editing sessions: you can have a window on the PDF that updates automatically when you recompile the source file (say, in DrRacket).

4.2 Quadwriter & HTML🔗ℹ
Suppose Markdown is just not your thing. You prefer to enter your HTML-style markup the old-fashioned way — by hand. I hear you. So let’s switch to the quadwriter/html dialect. First we try our simple test:
"test.rkt"

	#lang quadwriter/html
	Brennan and Dale like fancy sauce.

We get the same PDF result as before, again because a short line of plain text is the same in this dialect as the last.
But if we want to reproduce the result of the Markdown notation, this time we use the equivalent HTML-ish markup tags:
"test.rkt"

	#lang quadwriter/html
	◊h1{Did you know?}
	
	◊strong{Brennan} and ◊strong{Dale} like:
	
	◊ul{
	◊li{◊em{Fancy} sauce}
	◊li{◊em{Chicken} fingers}
	}
	
	◊pre{
	◊code{
	And they love to code
	}
	}

The special ◊ character is called a lozenge. It introduces markup tags. Instructions for typing it, but for now it suffices to copy & paste, or use the Insert Command Char button in the DrRacket toolbar.
Under the hood, the quadwriter/markdown dialect is converting the Markdown surface notation into markup tags that look like this. So the quadwriter/html dialect just lets us start with those tags.
Curious characters can prove that this is so by again typing at the REPL:
	> doc

This Q-expression is exactly the same as the one that resulted with the quadwriter/markdown source file.
4.3 Quadwriter & Q-expressions🔗ℹ
quadwriter/markdown showed high-level notation (= a generous way of describing Markdown) that generated a Q-expression. Then quadwriter/html showed a mid-level notation that generated another (identical) Q-expression.
If we wish, we can also skip the notational foofaraw and just write Q-expressions directly in our source file. We do this with the basic quadwriter language.
Recall our very first example:
"test.rkt"

	#lang quadwriter/html
	Brennan and Dale like fancy sauce.

In the REPL, the doc was this Q-expression:
'(q () (q ((page-margin-left "120") (page-margin-top "80") (page-margin-bottom "120") (font-family "text") (line-height "17")) "Brennan and Dale like fancy sauce."))

Let’s copy this Q-expression and use it as our new source code. This time, however, we’ll switch to plain #lang quadwriter (instead of the markup or markdown dialects):
"test.rkt"

	#lang quadwriter
	'(q () (q ((page-margin-left "120") (page-margin-top "80")
	(page-margin-bottom "120") (font-family "text")
	(line-height "17")) "Brennan and Dale like fancy sauce."))

This produces the same one-line PDF as before.
Likewise, we can pick up the doc from our more complex example:
	#lang quadwriter/markdown
	# Did you know?
	
	__Brennan__ and **Dale** like:
	
	* *Fancy* sauce
	* _Chicken_ fingers
	
	```
	And they love to code
	```


And again, use the resulting Q-expression in doc as the source for a new quadwriter program, which will result in the same PDF.
It is also possible to mix #lang quadwriter/html and Q-expressions, allowing us to escape to lower-level Q-expressions when needed.
	#lang quadwriter/html
	
	◊h1{A nice image}
	
	Check out this ◊b{nice} image:
	
	◊q[#:line-height "false" #:image-width "400" #:line-align "center"
	 #:image-file "nice-image.png" #:image-alt "A nice image"
	 #:display "block"]{}

4.4 Setting section-level attributes🔗ℹ
Even if you’re using a quadwriter dialect, you can still set section-level formatting attributes for the document. For instance, suppose we wanted to make our original quadwriter/markdown example 24 points and red, and put the PDF on wide tabloid (17in × 11in) paper. We can add these section-level attributes to the beginning of our source file as keyword arguments:
"test.rkt"

	#lang quadwriter/markdown
	
	#:page-size "tabloid"
	#:page-orientation "wide"
	#:font-size 18
	#:font-color "red"
	
	Brennan and Dale like fancy sauce.

Any of the Markup attributes documented below can be used as keyword arguments. The syntax follows the pattern above: one attribute + value pair per line, with the attribute prefixed with #: to make it a keyword, followed by the value.
This keyword syntax works in the quadwriter, quadwriter/markdown, and quadwriter/html languages. The idea is to make it easy to adjust the default layout behavior without going outside the source file.
4.5 Invoking Quadwriter as a library🔗ℹ
Part of the idea of quad and quadwriter is to make typographic layout & PDF generation a service that can be built into other Racket apps and languages.
Let’s see how this works by doing document layout and rendering from within good old racket/base:
"test.rkt"

	#lang racket/base
	(require quadwriter)
	(define qx `(q "Brennan likes fancy sauce."
	 ,para-break
	 "Dale hates fancy sauce."))
	(define pdf-path "~/Desktop/new.pdf")
	(render-pdf qx pdf-path)

Here, we create a little Q-expression, which we pass to render-pdf with a pdf-path argument.
4.6 Combining Quadwriter with Pollen🔗ℹ
Fans of pollen might be glad to hear that quadwriter can be used to handle layout and PDF rendering for Pollen source files. As usual we start with a Pollen source file, this time with the pdf.pm extension to indicate that it’s a Pollen markup file that will produce a PDF:
"test.pdf.pm"

	#lang pollen
	
	Brennan likes fancy sauce.
	
	Dale hates fancy sauce.
	

Then we add a simple "pollen.rkt" that converts the output of our source file into a Q-expression:
"pollen.rkt"

	#lang racket
	(require pollen/decode quadwriter)
	(provide root render-pdf)
	
	(define (root . xs)
	 `(q ,@(add-between (decode-paragraphs xs 'q) para-break)))

All we’re doing here is wrapping our paragraphs in q tags (rather than the default p tags) and then adding explicit Quadwriter paragraph breaks between them (see para-break).
Finally, we add a "template.pdf.p" that passes the doc from the Pollen source to render-pdf:
"template.pdf.p"

	◊(render-pdf doc #false)

In this case, we pass #false as the path argument to render-pdf so that it returns the actual bytes, which the Pollen renderer will put in the right place.
You can fire up the Pollen project server and see how this works. As usual with Pollen sources, when you make changes to the source file, the rendered PDF will be dynamically updated.
Though a quadwriter source file and a pollen source file both export something called doc, these exports don’t share any deeper connection. (The name was chosen to be consistent with Scribble, which also exports a doc.)

4.7 Quick tour complete🔗ℹ
In the usual Racket tradition, quadwriter and its dialects are just compiling a document from a higher-level representation to a lower-level representation.
If you’re a writer, you might prefer to use the high-level representation (like quadwriter/markdown) so that your experience is optimized for ease of use.
If you’re a developer, you might prefer to use the lower-level representation for precision. For instance, a pollen author who wanted to generate a PDF could design tag functions that emit Q-expressions, and then pass the result to render-pdf.
Or, you can aim somewhere in between. Like everything else in Racket, you can design functions & macros to emit the pieces of a Q-expression using whatever interface you prefer.
5 Quadwriter: developer guide🔗ℹ
	 (require quadwriter)	 package: quad

	 #lang quadwriter	 package: quad
	 #lang quadwriter/markdown
	 #lang quadwriter/html

	value

doc : qexpr?

Every source file written in a quadwriter dialect exports an identifier called doc that contains the Q-expression that results from running the source.
5.1 Q-expressions🔗ℹ
A Q-expression is an X-expression, but more restricted:
	 qexpr	 	=	 	string
	 	 	|	 	(list q (list (list attr-name attr-val) ...) qexpr ...)
	 	 	|	 	(list q (list qexpr ...))

This grammar means that a Q-expression is either a) a string, b) an X-expression whose tag is q and whose elements are themselves Q-expressions.

Examples:
	> (qexpr? "Hello world")
	#t

	> (qexpr? '(q "Hello world"))
	#t

	> (qexpr? '(q () "Hello world"))
	#t

	> (qexpr? '(q ((font-color "pink")) "Hello world"))
	#t

	> (qexpr? '(q ((font-color "pink")) (q "Hello world")))
	#t

	; malformed Q-expressions
	> (qexpr? 42)
	#f

	> (qexpr? '(div "Hello world"))
	#t

	> (qexpr? '(q (("pink" font-color)) "Hello world"))
	#f

Because Q-expressions are a subset of X-expressions, you can apply any tools that work with X-expressions (for instance, the txexpr library).
Unlike X-expressions, Q-expressions do not support character entities or CDATA, because those are inherent to XML-ish markup.

5.2 Markup🔗ℹ
5.3 Hard breaks🔗ℹ

		value

line-break : qexpr?

		value

column-break : qexpr?

		value

page-break : qexpr?

The Q-expressions '(line-break), '(column-break), and '(page-break), respectively. Quadwriter will automatically insert these breaks as needed. But you can also add them explicitly (aka “hard” breaks) by inserting the Q-expression denoting the break.

	value

para-break : qexpr?

The Q-expression '(para-break). Used to denote the start of a new paragraph. The default space-before a paragraph is 0; the default space-after is 60% of the paragraph’s line-height.

	value

section-break : qexpr?

The Q-expression '(section-break). Used to denote the start of a new section.
A section is a contiguous series of pages. Each section has its own Section-level attributes. A document without any explicit section breaks still has one section (that includes all the pages).
5.4 Drawing quads🔗ℹ
	 (require quadwriter/draw)	 package: quad

Drawing quads can be used to put arbitrary text or shapes in the document, either in the midst of the text flow, or at arbitrary locations. Drawing quads can be used to implement headers and footers, line numbers, title pages, and so on.

	value

line : qexpr?

Draws a line. Four attributes are required: x1 and y1 (which determine the starting point) and x2 and y2 (which determine the ending point). Each of these values is a dimension string. These distances are interpreted as relative to the upper left corner of the quad.
Optional attributes are stroke (a dimension string that controls the thickness of the line) and color (a a hex color string or named color string that controls the color of the line).

	value

text : qexpr?

Draws a single text string without line wrapping. One attribute is required: string, which is the string to be drawn.
A text-drawing quad will also inherit the current Font attributes, which can also be set separately.
5.5 Attributes🔗ℹ
These are the attributes that can be used inside a Q-expression passed to quadwriter. Inside a Q-expression, every attribute is a symbol, and every attribute value is a string.
A dimension string represents a distance in the plane. If unitless, it is treated as points (where 1 point = 1/72 of an inch). If the number has in, cm, or mm as a suffix, it is treated as inches, centimeters, or millimeters respectively. If the number has p or pica as a suffix or infix, it is treated as a pica / point measurement. A pica is 12 points, so 12p is 72 points, and 3p9 is 45 points. If the number has em as a suffix, it is treated as an em measurement, which is a multiple of the current font size.
5.5.1 Document-level attributes🔗ℹ
Attributes that can only be set once for the whole document.

	attribute

output-path : symbol?

Output path for the rendered PDF. Default is the name of the source file with its extension changed to .pdf. For instance, "my-source.rkt" would become "my-source.pdf". Unsaved source files are rendered as "untitled.pdf".

		attribute

pdf-title : symbol?

		attribute

pdf-author : symbol?

		attribute

pdf-subject : symbol?

		attribute

pdf-keywords : symbol?

Strings that are used to fill in the corresponding PDF metadata fields. Default for each is the empty string.
5.5.2 Section-level attributes🔗ℹ
Attributes that can be set for each section.

		attribute

page-size : symbol?

		attribute

page-orientation : symbol?

The usual way of setting the overall page dimensions of the rendered PDF. The value of page-size is a named page size. The value of page-orientation can be either "tall" or "portrait" (which both put the longer edge vertically) or "wide" or "landscape" (which put the longer edge horizontally).
The named page sizes are listed below. Names are case-insensitive. Dimensions below are in points.
	name
	
	short edge
	
	long edge

	2A0
	
	3370.39
	
	4767.87

	4A0
	
	4767.87
	
	6740.79

	A0
	
	2383.94
	
	3370.39

	A1
	
	1683.78
	
	2383.94

	A10
	
	73.7
	
	104.88

	A2
	
	1190.55
	
	1683.78

	A3
	
	841.89
	
	1190.55

	A4
	
	595.28
	
	841.89

	A5
	
	419.53
	
	595.28

	A6
	
	297.64
	
	419.53

	A7
	
	209.76
	
	297.64

	A8
	
	147.4
	
	209.76

	A9
	
	104.88
	
	147.4

	B0
	
	2834.65
	
	4008.19

	B1
	
	2004.09
	
	2834.65

	B10
	
	87.87
	
	124.72

	B2
	
	1417.32
	
	2004.09

	B3
	
	1000.63
	
	1417.32

	B4
	
	708.66
	
	1000.63

	B5
	
	498.9
	
	708.66

	B6
	
	354.33
	
	498.9

	B7
	
	249.45
	
	354.33

	B8
	
	175.75
	
	249.45

	B9
	
	124.72
	
	175.75

	C0
	
	2599.37
	
	3676.54

	C1
	
	1836.85
	
	2599.37

	C10
	
	79.37
	
	113.39

	C2
	
	1298.27
	
	1836.85

	C3
	
	918.43
	
	1298.27

	C4
	
	649.13
	
	918.43

	C5
	
	459.21
	
	649.13

	C6
	
	323.15
	
	459.21

	C7
	
	229.61
	
	323.15

	C8
	
	161.57
	
	229.61

	C9
	
	113.39
	
	161.57

	EXECUTIVE
	
	521.86
	
	756.0

	FOLIO
	
	612.0
	
	936.0

	LEGAL
	
	612.0
	
	1008.0

	LETTER
	
	612.0
	
	792.0

	RA0
	
	2437.8
	
	3458.27

	RA1
	
	1729.13
	
	2437.8

	RA2
	
	1218.9
	
	1729.13

	RA3
	
	864.57
	
	1218.9

	RA4
	
	609.45
	
	864.57

	SRA0
	
	2551.18
	
	3628.35

	SRA1
	
	1814.17
	
	2551.18

	SRA2
	
	1275.59
	
	1814.17

	SRA3
	
	907.09
	
	1275.59

	SRA4
	
	637.8
	
	907.09

	TABLOID
	
	792.0
	
	1224.0

		attribute

page-width : symbol?

		attribute

page-height : symbol?

The unusual way of setting the overall page dimensions of the rendered PDF. Both values are given as a dimension string.

		attribute

page-margin-top : symbol?

		attribute

page-margin-bottom : symbol?

		attribute

page-margin-left : symbol?

		attribute

page-margin-right : symbol?

Inset values from the page edges. Value is a dimension string. Default values depend on size of the page: they are chosen to be not completely bananas.

	attribute

page-margin-gutter : symbol?

Extra space added to the inner margin of page. Value is a dimension string. On right-hand pages, the gutter will be added to the left margin. On left-hand pages, it will be added to the right margin. Default is 0.

	attribute

page-number-start : symbol?

First page number used. Value is an integer. Default is 1.

	attribute

page-side-start : symbol?

Side that first page appears on. Value is "left", "right", or "next". Default is "right". If the value is "left" or "right", a blank page will be inserted if necessary.

		attribute

column-count : symbol?

		attribute

column-gap : symbol?

Columns per page. column-count is a positive integer; column-gap (the space between columns) is a dimension string.

	attribute

footer-display : symbol?

Whether footer is displayed. Default is "false". Footer is suppressed if this value is "none" or "false".

	attribute

footer-text : symbol?

Text displayed in footer. Default is "false", which will lead to default text being used for the footer (= a combination of page number, document name, and time / date).
5.5.3 Block-level attributes🔗ℹ
A block is a paragraph or other rectangular item (say, a blockquote or code block) with paragraph breaks around it.
Block-level attributes are ignored unless the quad is a block-level element. To explicitly promote a quad to a block-level element, use the display attribute with value "block".

		attribute

inset-top : symbol?

		attribute

inset-bottom : symbol?

		attribute

inset-left : symbol?

		attribute

inset-right : symbol?

Inset values increase the layout boundary of the quad. Value is a dimension string. "0" by default.

		attribute

border-inset-top : symbol?

		attribute

border-inset-bottom : symbol?

		attribute

border-inset-left : symbol?

		attribute

border-inset-right : symbol?

Border-inset values do not change the layout boundary of the quad. Rather, they change the position of the border (if any) relative to the layout boundary. Value is a dimension string. "0" by default (meaning, the border sits on the layout boundary).

		attribute

border-width-top : symbol?

		attribute

border-width-bottom : symbol?

		attribute

border-width-left : symbol?

		attribute

border-width-right : symbol?

Width of the border on each edge of the quad. Value is a dimension string. "0" by default (meaning no border).

		attribute

border-color-top : symbol?

		attribute

border-color-bottom : symbol?

		attribute

border-color-left : symbol?

		attribute

border-color-right : symbol?

Color of the border on each edge of the quad. Value is a hex color string or named color string.

	attribute

background-color : symbol?

Color of the background of the quad. Value is a hex color string or named color string.

		attribute

space-before : symbol?

		attribute

space-after : symbol?

Vertical space added around a block. Value is a dimension string.

		attribute

keep-first-lines : symbol?

		attribute

keep-last-lines : symbol?

How many lines of the quad are kept together near a page break. keep-first-lines sets the minimum number of lines that appear before a page break; keep-last-lines sets the minimum number that appear after. In both cases, they take a non-negative integer string as a value, or "all".
If the value (of one or both attributes) is "all", then all the lines of the quad are kept on the same page. Be careful with this option — it’s possible to make a single quad that’s longer than one page, in which case quadwriter will ignore the setting to prevent the annihilation of the universe.

	attribute

keep-with-next : symbol?

Whether a quad appears on the same page with the following quad. Activated only when value is "true". Essentially this is the “nonbreaking paragraph space”.

	attribute

line-align : symbol?

How the lines are aligned horizontally in the quad. Possibilities are "left", "center", "left", "justify", "inner", and "outer".
"inner" and "outer" align the line toward (or away from) the gutter. So on right-hand pages, "inner" alignment is the same as "left", and "outer" is the same as "right". On left-hand pages, vice versa.
The last line of a paragraph with "justify" alignment will only be justified if the space left over is reasonably small. Otherwise it will be left-aligned. This is because the last line of the paragraph may only have a few words on it.

	attribute

first-line-indent : symbol?

The indent of the first line in the quad. Value is a dimension string.

	attribute

line-wrap : symbol?

Selects the linebreak algorithm. A value of "best" or "kp" invokes the Knuth–Plass linebreaking algorithm, which finds the optimal set of linebreaks (defined as the set that gives the most even spacing throughout the paragraph). Otherwise, you get the ordinary linebreak algorithm, which just puts as many words as it can on each line. The Knuth–Plass algorithm is slower, of course.

	attribute

hyphenate : symbol?

Whether the block is hyphenated. Activated only when value is "true".

	attribute

clip : symbol?

Whether the contents of the block are clipped to its boundary. Activated only when value is "true".

		attribute

image-file : symbol?

		attribute

image-alt : symbol?

		attribute

image-height : symbol?

		attribute

image-width : symbol?

Specify a quad with an image (either ".png" or ".jpeg"). image-file is a string containg the path to the image file. image-alt is optional text.
image-height and image-width are optional sizing values, each of which is a dimension string. If neither image-height nor image-width are provided, the image is displayed at “full size” (meaning one pixel = one point, or 72 dpi). If both image-height and image-width are provided, the image is displayed at exactly that size. If only image-height or image-width is provided, the image is scaled by the proportion implied by the value. That is, if image-height is "50" and the image is 200 pixels high by 100 pixels wide, then the image will be displayed 50 pixels high by 25 pixels wide.
5.5.4 Positioning attributes🔗ℹ

	attribute

repeat : symbol?

Moves the quad from its existing position and repeats it within the document according to the attribute value, which is a query string like "section[this]:page[*]". This attribute is resolved before parent, so a parent value like "page[this]:line[first]" will refer to the first line on the page that the quad has landed on as a result of the repeat operation.

	attribute

parent : symbol?

Moves the quad from its existing position in the layout into a new parent quad. Value is a query string like "page[this]:line[2]".

	attribute

anchor-from-parent : symbol?

Forces the quad to attach to its parent using the designated anchor on the parent. Value is an anchor string. See Layout model for an explanation of the anchoring system.

	attribute

anchor-to : symbol?

Forces the current quad to attach to its antecedent using the designated anchor on the current quad. Value is an anchor string. See Layout model for an explanation of the anchoring system.
5.5.5 Font attributes🔗ℹ

	attribute

font-size : symbol?

Sets the point size for text. Value is a dimension string.

	attribute

font-family : symbol?

Name of the font family. Value is a string with the font-family name. See Fonts for where these names come from.

	attribute

font-color : symbol?

The color of the rendered font. Value is a hex color string or named color string.

	attribute

font-bold : symbol?

Whether the quad has bold styling applied. Activated only when value is "true".

	attribute

font-italic : symbol?

Whether the quad has italic styling applied. Activated only when value is "true".

	attribute

font-underline : symbol?

Whether the quad has an underline applied. Activated only when value is "true".

	attribute

font-features : symbol?

Sets OpenType layout features. font-features takes a feature string, which is an alternating list of OT feature tags and values, separated by white space. For instance, "liga 0 smcp 1" would deactivate the ligature feature and activate the small-cap feature. If the feature string is prefixed with "+", rather than replacing the current feature settings, it amends the features that would otherwise apply.
Fonts with OpenType layout features may be configured so that certain features, like ligatures, are activated by default. Your font will display these layout features even though there is no font-features attribute in your Q-expression. You can, however, still turn them off with font-features.

	attribute

font-tracking : symbol?

Space between characters. Value is a dimension string.

	attribute

font-baseline-shift : symbol?

Vertical offset of font baseline (positive values move the baseline up, negative down). Value is a dimension string.

	attribute

font-case : symbol?

Case transformation of string. Possibilities are "uppercase", "lowercase", or "capitalize" (= first letter of each word is uppercase, the rest is lowercase).
5.5.6 Other attributes🔗ℹ

	attribute

display : symbol?

Sets the display type. Value is a string. Supply "block" as a value of this attribute to make the quad behave as a block-level element.

	attribute

line-height : symbol?

Sets the distance between baselines. Value is a dimension string.

	attribute

draw-debug : symbol?

Controls whether debug boxes are drawn. Value can be "false" (default) or "true".
TK: OT feature attributes, bullet attributes
5.6 Query strings🔗ℹ
Certain quad attributes (like repeat and parent) accept a query string as a value. A query string lets us refer to quads that will eventually exist in the layout (like lines, pages, and sections) while we’re still in the markup.
A query string consists of query pieces chained together with colons : in between. Each query piece has a target and a subscript.
A query target can be doc, section, page, column, block, or line, referring to the corresponding layout entities.
A query subscript follows the query target in square brackets. Some subscripts refer to single quads; some refer to multiples. If any query piece contains a subscript that refers to multiple quads, then the result of the whole query will be a list of quads, or #false if no matches were found. Similarly, if no subscript refers to multiple quads, then the result of the whole query will be a single quad, or #false if no match is found.
Possible query subscripts are:
	this: refers to the current target, relative to the location of the quad in the layout. So "page[this]" means the current page, and "section[this]" means the current section.

	prev and next: respectively refer to the previous or next target, relative to the location of the quad in the layout. So "page[prev]" means the page before the current page, and "section[next]" means the section after the current one.

	a positive integer, which is interpreted as the nth item (counting from 1) within the previous quad in the query. So the second page of the document would be "doc[this]:page[2]".

	a negative integer, which is interpreted as the nth item (counting from the end) within the previous quad in the query. So the next-to-last page of the current section would be "section[this]:page[-2]".

	i..j, where i and j are positive or negative integers, with the meanings given above. The .. in between means the range of items from the ith to the jth, inclusive. So the second through fourth pages of the previous section would be "section[prev]:page[2..4]".

	first and last, which are the same as 1 and -1, respectively.

	all or *, which refers to all matching items. So all the pages in the previous section would be "section[prev]:pages[all]" or "section[prev]:pages[*]". All the lines on the third page of every section would be "section[*]:page[3]:line[*]".

	rest, which refers to all items after the first. So all the pages in the document that do not fall on the first page of a section would be "section[*]:page[rest]".

	odd or even, which respectively refer to all the items with an odd or even numerical subscript. So if a page has five lines, "page[this]:line[odd]" would refer to the first, third, and fifth, and "page[this]:line[even]" to the second and fourth.

TK: querying quads by name, and left and right
5.7 Rendering🔗ℹ

	procedure

	(render-pdf	 	qx	 	 	 	
	 	 [pdf-path	 	 	 	
	 	 	base-dir	 	 	 	
	 	 	#:replace replace?	 	 	 	
	 	 	#:compress compress?])	 	→	 	(or/c void? bytes?)

	 qx : qexpr?
	 pdf-path : (or/c path? path-string? #false) = #false
	 base-dir : (or/c path? path-string?) = (current-directory)
	 replace? : any/c = #true
	 compress? : any/c = #true

Compute the layout for qx and render it as a PDF to pdf-path. If pdf-path is #false, then the rendered PDF is returned as a byte string. Otherwise it is written to pdf-path. The default is #false.
The optional base-dir argument sets a base directory for resolution of any relative path names passed as attribute values. The default is (current-directory).
The optional replace? argument controls whether an existing file is automatically overwritten. The default is #true.
The optional compress? argument controls whether data inside the resulting PDF is compressed. The default is #true.
5.8 Fonts🔗ℹ
A design goal of Quadwriter is to treat document layout as the result of a program. Along those lines, fonts are handled differently than usual. When you use a word processor, you choose from whatever fonts might be installed on your system.
Quadwriter, by contrast, prefers to rely on fonts that are in the same directory as your other project source files. This is a feature: it means that everything necessary to render the document can travel together in the same directory. You can re-render it anywhere with identical results. You never have the problem — still with us after 35 years of desktop word processing — that “oh, you need to install such-and-such font in your system before it will work.” Bah!
Quadwriter supports the usual TrueType (.ttf) and OpenType (.otf) font files. It also supports WOFF files (.woff). To add fonts to your Quadwriter experience:
	Within your project directory, create a subdirectory called "fonts".

	Within "fonts", create a subdirectory for each font family you want to use in your Quadwriter document. The names of these subdirectories will become the acceptable values for the font-family attribute in your documents.

	If there is only one font file in the family subdirectory, then it is used every time the font family is requested.

	Alternatively, you can specify styled variants by creating within the family directory style subdirectories called "regular", "bold", "italic", and "bold-italic".

	Oh, you dislike making subdirectories? Then you can also specify styled variants by putting a set of four font files at the top level of the family subdirectory whose filenames include "bold" and "italic" (denoting the bold italic style), "bold" (denoting bold), "italic" (denoting italic), and neither "bold" nor "italic" (denoting regular).

Though this system may seem like a lot of housekeeping, it’s nice for two reasons. First, we use the filesystem to map font names to font files, and avoid having another configuration file floating around our project. Second, we create a layer of abstraction between font names and files. This makes it easy to change the fonts in the document: you just put new fonts in the appropriate font-family directory, and you don’t need to faff about with the source file itself.
TK: example of font setup
5.8.1 Default font families🔗ℹ
Quadwriter typesets documents by looking up families with the names below. You can override the default selections by providing a family in the fonts folder of your project that has the same name.

	font directory

text : path-string?

Used for all body text. Default is a serif font.

	font directory

heading : path-string?

Used for headings. Default is a sans serif font.

	font directory

code : path-string?

Used for code. Default is a monospaced font.

	font directory

blockquote : path-string?

Used for blockquote boxes. Default is a sans serif font.

	font directory

default : path-string?

Used for any miscellaneous elements. Default is same as text.

	font directory

fallback-emoji : path-string?

Fallback only. Used for emoji not present in the currently selected font.

	font directory

fallback-math : path-string?

Fallback only. Used for math symbols not present in the currently selected font.

	font directory

fallback : path-string?

Fallback only. Used for other glyphs not present in the currently selected font.
5.8.2 System fonts🔗ℹ
Yes, if you’re feeling lazy, you can use the name of a built-in system font family in any field that takes a family name, and Quad will comply.
If you do this, bear in mind that your source file will no longer necessarily be portable between systems, because it depends on a certain font already being available on that system. (Portable = one can run the source file on a different machine and get an equivalent result.) I include this option because I can imagine plenty of uses for Quad where ease outweighs portability. In which case, have at it.
The concern about portability pertains only to the source file. Once you generate an output PDF from the source file, the PDF itself will always be portable. Regardless of whether you invoke a system font or project font in your source file, the font will be embedded within the PDF. The PDF will then display correctly on any platform, with the correct fonts.
5.9 Colors🔗ℹ
A hex color is a case-insensitive string of six hex digits prefixed with #, such as "#fe456a" or "#cc6633". The pairs of digits represent the red, green, and blue components of the color respectively, each pair taking on hex values between 0 ("00") and 255 ("ff"), inclusive. As optional shorthand, a three-digit hex color such as "#c63" is equivalent to "#cc6633".
A named color is a hex color with a pre-existing name.
	name
	
	hex color equivalent

	aliceblue
	
	#f0f8ff

	antiquewhite
	
	#faebd7

	aqua
	
	#00ffff

	aquamarine
	
	#7fffd4

	azure
	
	#f0ffff

	beige
	
	#f5f5dc

	bisque
	
	#ffe4c4

	black
	
	#000000

	blanchedalmond
	
	#ffebcd

	blue
	
	#0000ff

	blueviolet
	
	#8a2be2

	brown
	
	#a52a2a

	burlywood
	
	#deb887

	cadetblue
	
	#5f9ea0

	chartreuse
	
	#7fff00

	chocolate
	
	#d2691e

	coral
	
	#ff7f50

	cornflowerblue
	
	#6495ed

	cornsilk
	
	#fff8dc

	crimson
	
	#dc143c

	cyan
	
	#00ffff

	darkblue
	
	#00008b

	darkcyan
	
	#008b8b

	darkgoldenrod
	
	#b8860b

	darkgray
	
	#a9a9a9

	darkgreen
	
	#006400

	darkgrey
	
	#a9a9a9

	darkkhaki
	
	#bdb76b

	darkmagenta
	
	#8b008b

	darkolivegreen
	
	#556b2f

	darkorange
	
	#ff8c00

	darkorchid
	
	#9932cc

	darkred
	
	#8b0000

	darksalmon
	
	#e9967a

	darkseagreen
	
	#8fbc8f

	darkslateblue
	
	#483d8b

	darkslategray
	
	#2f4f4f

	darkslategrey
	
	#2f4f4f

	darkturquoise
	
	#00ced1

	darkviolet
	
	#9400d3

	deeppink
	
	#ff1493

	deepskyblue
	
	#00bfff

	dimgray
	
	#696969

	dimgrey
	
	#696969

	dodgerblue
	
	#1e90ff

	firebrick
	
	#b22222

	floralwhite
	
	#fffaf0

	forestgreen
	
	#228b22

	fuchsia
	
	#ff00ff

	gainsboro
	
	#dcdcdc

	ghostwhite
	
	#f8f8ff

	gold
	
	#ffd700

	goldenrod
	
	#daa520

	gray
	
	#808080

	green
	
	#008000

	greenyellow
	
	#adff2f

	grey
	
	#808080

	honeydew
	
	#f0fff0

	hotpink
	
	#ff69b4

	indianred
	
	#cd5c5c

	indigo
	
	#4b0082

	ivory
	
	#fffff0

	khaki
	
	#f0e68c

	lavender
	
	#e6e6fa

	lavenderblush
	
	#fff0f5

	lawngreen
	
	#7cfc00

	lemonchiffon
	
	#fffacd

	lightblue
	
	#add8e6

	lightcoral
	
	#f08080

	lightcyan
	
	#e0ffff

	lightgoldenrodyellow
	
	#fafad2

	lightgray
	
	#d3d3d3

	lightgreen
	
	#90ee90

	lightgrey
	
	#d3d3d3

	lightpink
	
	#ffb6c1

	lightsalmon
	
	#ffa07a

	lightseagreen
	
	#20b2aa

	lightskyblue
	
	#87cefa

	lightslategray
	
	#778899

	lightslategrey
	
	#778899

	lightsteelblue
	
	#b0c4de

	lightyellow
	
	#ffffe0

	lime
	
	#00ff00

	limegreen
	
	#32cd32

	linen
	
	#faf0e6

	magenta
	
	#ff00ff

	maroon
	
	#800000

	mediumaquamarine
	
	#66cdaa

	mediumblue
	
	#0000cd

	mediumorchid
	
	#ba55d3

	mediumpurple
	
	#9370db

	mediumseagreen
	
	#3cb371

	mediumslateblue
	
	#7b68ee

	mediumspringgreen
	
	#00fa9a

	mediumturquoise
	
	#48d1cc

	mediumvioletred
	
	#c71585

	midnightblue
	
	#191970

	mintcream
	
	#f5fffa

	mistyrose
	
	#ffe4e1

	moccasin
	
	#ffe4b5

	navajowhite
	
	#ffdead

	navy
	
	#000080

	oldlace
	
	#fdf5e6

	olive
	
	#808000

	olivedrab
	
	#6b8e23

	orange
	
	#ffa500

	orangered
	
	#ff4500

	orchid
	
	#da70d6

	palegoldenrod
	
	#eee8aa

	palegreen
	
	#98fb98

	paleturquoise
	
	#afeeee

	palevioletred
	
	#db7093

	papayawhip
	
	#ffefd5

	peachpuff
	
	#ffdab9

	peru
	
	#cd853f

	pink
	
	#ffc0cb

	plum
	
	#dda0dd

	powderblue
	
	#b0e0e6

	purple
	
	#800080

	red
	
	#ff0000

	rosybrown
	
	#bc8f8f

	royalblue
	
	#4169e1

	saddlebrown
	
	#8b4513

	salmon
	
	#fa8072

	sandybrown
	
	#f4a460

	seagreen
	
	#2e8b57

	seashell
	
	#fff5ee

	sienna
	
	#a0522d

	silver
	
	#c0c0c0

	skyblue
	
	#87ceeb

	slateblue
	
	#6a5acd

	slategray
	
	#708090

	slategrey
	
	#708090

	snow
	
	#fffafa

	springgreen
	
	#00ff7f

	steelblue
	
	#4682b4

	tan
	
	#d2b48c

	teal
	
	#008080

	thistle
	
	#d8bfd8

	tomato
	
	#ff6347

	turquoise
	
	#40e0d0

	violet
	
	#ee82ee

	wheat
	
	#f5deb3

	white
	
	#ffffff

	whitesmoke
	
	#f5f5f5

	yellow
	
	#ffff00

	yellowgreen
	
	#9acd32

5.10 Utility🔗ℹ

	procedure

(view-output) → void?

On the REPL, after running a quadwriter dialect and generating a PDF, this function will open the PDF.
6 Quad: the details🔗ℹ
	 (require quad)	 package: quad

As mentioned above, The quad library itself knows as little as it can about typography and fonts and pictures. Nor does it even assert a document model like Scribble. Rather, it offers a generic geometric represntation of layout elements. In turn, these elements can be combined into more useful pieces (e.g., quadwriter).
6.1 Data model: the quad🔗ℹ
The eponymous quad is a structure type that represents a rectangular layout area. This rectangle is used for layout purposes only. It is not enforced during the rendering phase. Meaning, once positioned, a quad’s drawing function can access this rectangle, but does not need to stay within it.
Each quad has nested elements, which is a (possibly empty) list of subquads. Given a certain element, the quad containing it is called its parent quad. There are no restrictions on what kind of quad can be nested in another.
6.2 Wrapping🔗ℹ
Wrapping is a optional phase where lists of quads are broken into sublists of a certain size. In quadwriter, the list of words is wrapped to produce a list of lines of a certain horizontal width. In turn, the list of lines is wrapped to produce a list of pages of a certain vertical height.
6.3 Layout model🔗ℹ
The heart of Quad’s layout model is its system of anchor points. A quad is positioned in a layout by aligning its anchor point to an anchor point on the previous quad.
Each quad has a set of 11 anchor points on its perimeter.
Eight points are named for the compass directions: 'n (= top center) 'e (= right center) 's (= bottom center) 'w (= left center) 'ne (= upper right) 'se (= lower right) 'sw (= lower left) 'nw (= upper left). The center of the quad is 'c.
The other two anchor points are 'baseline-in and 'baseline-out (or just 'bi and 'bo). These points are also on the quad perimeter. They allow quads containing typeset text to be aligned according to adjacent baselines. The exact location of these points depends on the direction of the script and the internal ascender value of the font. For instance, in left-to-right languages, 'baseline-in is on the left edge, and 'baseline-out is on the right. The vertical position of these points depends on the font associated with the quad. If no font is specified, the 'baseline-in and 'baseline-out anchors are vertically aligned with the southern edge. In that case, again supposing a left-to-right language, they would occupy the same positions as 'sw and 'se.
(As an attribute value, these anchor points become anchor strings: "n" or "e" or "bi" and so on.)
By default, each subquad will ultimately be positioned relative to the immediately preceding subquad (or, if it’s the first subquad, the parent). Optionally, a subquad can attach to the parent.
How does a quad know which anchor points to use? Each quad specifies a to anchor on its own perimeter, and a from anchor on the previous quad’s perimeter. The quad is positioned by moving it until its to anchor matches the position of the (already positioned) from anchor. Think of it like two tiny magnets clicking together.
A key benefit of the anchor-point system is that it gets rid of notions of “horizontal”, “vertical”, “up”, “down”, etc. Quads flow in whatever direction is implied by their anchor points.
	> (define parent (make-quad #:size '(25 25)))
	> (define child (make-quad #:size '(15 15)))
	> (quad->pict (position (attach-to parent 'e child 'w)))
	

	> (quad->pict (position (attach-to parent 'nw child 'se)))
	

	> (quad->pict (position (attach-to parent 'w child 'e)))
	

	> (quad->pict (position (attach-to parent 's child 'n)))
	

	> (quad->pict (position (attach-to parent 'e child 'n)))
	

“Wait a minute — why is the child quad specifying both anchor points? Shouldn’t the from anchor be specified by the parent quad?” It could, but it would make the layout system less flexible, because all the child quads hanging onto a certain parent quad would have to emanate from a single point. This way, every child quad can attach to its parent (or its neighbor) in whatever way it prefers.
6.4 Rendering🔗ℹ
Once the quads have been positioned, they are passed to the renderer, which recursively visits each quad and calls its drawing function.
Though every quad has a size field, this is just the size used during layout and positioning. Quad doesn’t know (or care) about whether the drawing stays within those bounds.
7 What are your plans for Quad?🔗ℹ
Some things I personally plan to use Quad for:
	A simple word processor. Quadwriter is the demo of this.

	Font sample documents. In my work as a type designer, I have to put together PDFs of fonts. To date, I have done them by hand, but I would like to just write programs to generate them.

	Book publishing. My wife is a lawyer and wants to publish a book about a certain area of the law that involves a zillion fiddly charts. If I had to do it by hand, it would take months. But with a Quad program, it could be easy.

7.1 Getting more help🔗ℹ
Questions about Quad and Quadwriter can be posted in the Quad forum.
7.2 Why is it called Quad?🔗ℹ
In letterpress printing, a quad was a piece of metal used as spacing material within a line.

“A way of doing something original is by trying something
so painstaking that nobody else has ever bothered with it.” — Brian Eno

 top contents ← prev up next →

