2 Deques
Double ended queues (or deque) are queues where elements can be added or removed from either end. The deque data structures provided by this library implement and provide the following operations: deque, empty?, enqueue, enqueue-front, head, tail, last, init and deque->list.
2.1 Bankers Deque
(require pfds/deque/bankers) | package: pfds |
Bankers deques are amortized double ended deques developed using the Bankers method. They provide an amortized running time of O(1) for the operations head, tail, last, init, enqueue-front and enqueue. They use lazy evaluation and memoization to achieve the amortized running time.
syntax
(Deque A)
> (deque 1 2 3 4 5 6)
- : #(struct:Deque
((Rec
g305889
(U (Pairof Positive-Byte g305889) (Promiseof g305889) Null))
Integer
(Rec
g305891
(U (Pairof Positive-Byte g305891) (Promiseof g305891) Null))
Integer))
#<Deque>
In the above example, the deque obtained will have 1 as its head element.
procedure
(enqueue-front a deq) → (Deque A)
a : A deq : (Deque A)
> (enqueue-front 10 (deque 5 6 3 4))
- : #(struct:Deque
((Rec
g305982
(U (Pairof Positive-Byte g305982) (Promiseof g305982) Null))
Integer
(Rec
g305984
(U (Pairof Positive-Byte g305984) (Promiseof g305984) Null))
Integer))
#<Deque>
In the above example, (enqueue-front 10 (deque 5 6 3 4)) adds 10 to the front of the (deque 5 6 3 4). 10 will be the head element.
In the above example, (head (empty Integer)) throws an error since the given deque is empty.
In the above example, (last (empty Integer))throws an error since the given deque is empty.
In the above example, (tail (deque 1 2 3 4 5 6)), removes the head of the given deque returns (deque 2 3 4 5 6).
In the above example, (init (deque 1 2 3 4 5 6)), removes the last element 6 and returns (deque 1 2 3 4 5).
procedure
(deque->list deq) → (Listof A)
deq : (Deque A)
> (deque->list (deque 10 2 34 4 15 6)) - : (Listof Positive-Byte)
'(10 2 34 4 15 6)
> (deque->list (empty Integer)) - : (Listof Integer)
'()
> (deque->list (map add1 (deque 1 2 3 4 5 6))) - : (Listof Positive-Index)
'(2 3 4 5 6 7)
> (deque->list (map * (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6))) - : (Listof Positive-Index)
'(1 4 9 16 25 36)
procedure
(foldl func init deq1 deq2 ...) → C
func : (C A B ... B -> C) init : C deq1 : (Deque A) deq2 : (Deque B)
foldl currently does not produce correct results when the given function is non-commutative.
> (foldl + 0 (deque 1 2 3 4 5 6)) - : Integer [more precisely: Nonnegative-Integer]
21
> (foldl * 1 (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Integer]
518400
procedure
(foldr func init deq1 deq2 ...) → C
func : (C A B ... B -> C) init : C deq1 : (Deque A) deq2 : (Deque B)
foldr currently does not produce correct results when the given function is non-commutative.
> (foldr + 0 (deque 1 2 3 4 5 6)) - : Integer [more precisely: Nonnegative-Integer]
21
> (foldr * 1 (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Integer]
518400
> (define que (deque 1 2 3 4 5 6)) > (deque->list (filter (λ: ([x : Integer]) (> x 5)) que)) - : (Listof Positive-Byte)
'(6)
> (deque->list (filter (λ: ([x : Integer]) (< x 5)) que)) - : (Listof Positive-Byte)
'(1 2 3 4)
> (deque->list (filter (λ: ([x : Integer]) (<= x 5)) que)) - : (Listof Positive-Byte)
'(1 2 3 4 5)
> (deque->list (remove (λ: ([x : Integer]) (> x 5)) (deque 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(1 2 3 4 5)
> (deque->list (remove (λ: ([x : Integer]) (< x 5)) (deque 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(5 6)
> (deque->list (remove (λ: ([x : Integer]) (<= x 5)) (deque 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(6)
procedure
(andmap func deq1 deq2 ...) → Boolean
func : (A B ... B -> Boolean) deq1 : (Deque A) deq2 : (Deque B)
> (andmap even? (deque 1 2 3 4 5 6)) - : Boolean
#f
> (andmap odd? (deque 1 2 3 4 5 6)) - : Boolean
#f
> (andmap positive? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (andmap negative? (deque -1 -2)) - : Boolean
#t
procedure
(ormap func deq1 deq2 ...) → Boolean
func : (A B ... B -> Boolean) deq1 : (Deque A) deq2 : (Deque B)
> (ormap even? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (ormap odd? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (ormap positive? (deque -1 -2 3 4 -5 6)) - : Boolean
#t
> (ormap negative? (deque 1 -2)) - : Boolean
#t
procedure
(build-deque size func) → (Deque A)
size : Natural func : (Natural -> A)
> (deque->list (build-deque 5 (λ:([x : Integer]) (add1 x)))) - : (Listof Integer)
'(1 2 3 4 5)
> (deque->list (build-deque 5 (λ:([x : Integer]) (* x x)))) - : (Listof Integer)
'(0 1 4 9 16)
> (head+tail (deque 1 2 3 4 5))
- : (Pairof
Positive-Byte
#(struct:Deque
((Rec
g306793
(U (Pairof Positive-Byte g306793) (Promiseof g306793) Null))
Integer
(Rec
g306795
(U (Pairof Positive-Byte g306795) (Promiseof g306795) Null))
Integer)))
'(1 . #<Deque>)
> (head+tail (build-deque 5 (λ:([x : Integer]) (* x x))))
- : (Pairof
Integer
#(struct:Deque
((Rec g306819 (U (Pairof Integer g306819) (Promiseof g306819) Null))
Integer
(Rec g306821 (U (Pairof Integer g306821) (Promiseof g306821) Null))
Integer)))
'(0 . #<Deque>)
> (head+tail (empty Integer)) head+tail: given deque is empty
> (last+init (deque 1 2 3 4 5))
- : (Pairof
Positive-Byte
#(struct:Deque
((Rec
g306862
(U (Pairof Positive-Byte g306862) (Promiseof g306862) Null))
Integer
(Rec
g306864
(U (Pairof Positive-Byte g306864) (Promiseof g306864) Null))
Integer)))
'(5 . #<Deque>)
> (last+init (build-deque 5 (λ:([x : Integer]) (* x x))))
- : (Pairof
Integer
#(struct:Deque
((Rec g306888 (U (Pairof Integer g306888) (Promiseof g306888) Null))
Integer
(Rec g306890 (U (Pairof Integer g306890) (Promiseof g306890) Null))
Integer)))
'(16 . #<Deque>)
> (last+init (empty Integer)) last+init: given deque is empty
2.2 Implicit Deque
(require pfds/deque/implicit) | package: pfds |
Deques obtained by applying Implicit Recursive Slowdown. Provides amortized running time of O(1) for the operations head, tail, last, init, enqueue-front and enqueue. Implicit Recursive Slowdown combines laziness and technique called Recursive Slow-Down developed by Kaplan and Tarjan in their paper Persistant Lists with Catenation via Recursive Slow-Down.
syntax
(Deque A)
> (deque 1 2 3 4 5 6) - : (U (Deep Positive-Byte) (Shallow Positive-Byte))
#<Deep>
In the above example, the deque obtained will have 1 as its head element.
In the above example, enqueue adds the element 10 to (deque 1 2 3 4 5 6 10).
procedure
(enqueue-front a deq) → (Deque A)
a : A deq : (Deque A)
> (enqueue-front 10 (deque 5 6 3 4)) - : (U (Deep Positive-Byte) (Shallow Positive-Byte))
#<Deep>
In the above example, (enqueue-front 10 (deque 5 6 3 4)) adds 10 to the front of the (deque 5 6 3 4). 10 will be the head element.
In the above example, (tail (deque 1 2 3 4 5 6)), removes 1 and returns (tail (deque 2 3 4 5 6)).
In the above example, (init (deque 1 2 3 4 5 6)), removes the last element 6 and returns (deque 1 2 3 4 5)
procedure
(deque->list deq) → (Listof A)
deq : (Deque A)
> (deque->list (deque 10 2 34 4 15 6)) - : (Listof Positive-Byte)
'(10 2 34 4 15 6)
> (deque->list (map add1 (deque 1 2 3 4 5 6))) - : (Listof Positive-Index)
'(2 3 4 5 6 7)
> (deque->list (map * (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6))) - : (Listof Positive-Index)
'(1 4 9 16 25 36)
procedure
(foldl func init deq1 deq2 ...) → C
func : (C A B ... B -> C) init : C deq1 : (Deque A) deq2 : (Deque B)
foldl currently does not produce correct results when the given function is non-commutative.
> (foldl + 0 (deque 1 2 3 4 5 6)) - : Integer [more precisely: Nonnegative-Integer]
21
> (foldl * 1 (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Integer]
518400
procedure
(foldr func init deq1 deq2 ...) → C
func : (C A B ... B -> C) init : C deq1 : (Deque A) deq2 : (Deque B)
foldr currently does not produce correct results when the given function is non-commutative.
> (foldr + 0 (deque 1 2 3 4 5 6)) - : Integer [more precisely: Nonnegative-Integer]
21
> (foldr * 1 (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Integer]
518400
> (define que (deque 1 2 3 4 5 6)) > (deque->list (filter (λ: ([x : Integer]) (> x 5)) que)) - : (Listof Positive-Byte)
'(6)
> (deque->list (filter (λ: ([x : Integer]) (< x 5)) que)) - : (Listof Positive-Byte)
'(1 2 3 4)
> (deque->list (filter (λ: ([x : Integer]) (<= x 5)) que)) - : (Listof Positive-Byte)
'(1 2 3 4 5)
> (deque->list (remove (λ: ([x : Integer]) (> x 5)) (deque 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(1 2 3 4 5)
> (deque->list (remove (λ: ([x : Integer]) (< x 5)) (deque 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(5 6)
> (deque->list (remove (λ: ([x : Integer]) (<= x 5)) (deque 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(6)
procedure
(andmap func deq1 deq2 ...) → Boolean
func : (A B ... B -> Boolean) deq1 : (Deque A) deq2 : (Deque B)
> (andmap even? (deque 1 2 3 4 5 6)) - : Boolean
#f
> (andmap odd? (deque 1 2 3 4 5 6)) - : Boolean
#f
> (andmap positive? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (andmap negative? (deque -1 -2)) - : Boolean
#t
procedure
(ormap func deq1 deq2 ...) → Boolean
func : (A B ... B -> Boolean) deq1 : (Deque A) deq2 : (Deque B)
> (ormap even? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (ormap odd? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (ormap positive? (deque -1 -2 3 4 -5 6)) - : Boolean
#t
> (ormap negative? (deque 1 -2)) - : Boolean
#t
procedure
(build-deque size func) → (Deque A)
size : Natural func : (Natural -> A)
> (deque->list (build-deque 5 (λ:([x : Integer]) (add1 x)))) - : (Listof Integer)
'(1 2 3 4 5)
> (deque->list (build-deque 5 (λ:([x : Integer]) (* x x)))) - : (Listof Integer)
'(0 1 4 9 16)
2.3 Real-Time Deque
(require pfds/deque/real-time) | package: pfds |
Real-Time Deques eliminate the amortization by using two techniques Scheduling and a variant of Global Rebuilding called Lazy Rebuilding. The data structure gives a worst case running time of O(1) for the operations head, tail, last, init, enqueue-front and enqueue.
syntax
(Deque A)
> (deque 1 2 3 4 5 6)
- : #(struct:Deque
((Rec
g310539
(U (Boxof (U (-> (Pairof Integer g310539)) (Pairof Integer g310539)))
Null))
Integer
(Rec
g310542
(U (Boxof (U (-> (Pairof Integer g310542)) (Pairof Integer g310542)))
Null))
(Rec
g310545
(U (Boxof (U (-> (Pairof Integer g310545)) (Pairof Integer g310545)))
Null))
Integer
(Rec
g310548
(U (Boxof (U (-> (Pairof Integer g310548)) (Pairof Integer g310548)))
Null))))
#<Deque>
In the above example, the deque obtained will have 1 as its head element.
> (enqueue 10 (deque 1 2 3 4 5 6))
- : #(struct:Deque
((Rec
g310580
(U (Boxof (U (-> (Pairof Integer g310580)) (Pairof Integer g310580)))
Null))
Integer
(Rec
g310583
(U (Boxof (U (-> (Pairof Integer g310583)) (Pairof Integer g310583)))
Null))
(Rec
g310586
(U (Boxof (U (-> (Pairof Integer g310586)) (Pairof Integer g310586)))
Null))
Integer
(Rec
g310589
(U (Boxof (U (-> (Pairof Integer g310589)) (Pairof Integer g310589)))
Null))))
#<Deque>
In the above example, enqueue adds the element 10 to the end of (deque 1 2 3 4 5 6).
procedure
(enqueue-front a deq) → (Deque A)
a : A deq : (Deque A)
> (enqueue-front 10 (deque 1 2 3 4 5 6))
- : #(struct:Deque
((Rec
g310601
(U (Boxof (U (-> (Pairof Integer g310601)) (Pairof Integer g310601)))
Null))
Integer
(Rec
g310604
(U (Boxof (U (-> (Pairof Integer g310604)) (Pairof Integer g310604)))
Null))
(Rec
g310607
(U (Boxof (U (-> (Pairof Integer g310607)) (Pairof Integer g310607)))
Null))
Integer
(Rec
g310610
(U (Boxof (U (-> (Pairof Integer g310610)) (Pairof Integer g310610)))
Null))))
#<Deque>
In the above example, enqueue adds the element 10 to the front of (deque 1 2 3 4 5 6) and returns (deque 10 1 2 3 4 5 6).
> (tail (deque 1 2 3 4 5 6))
- : #(struct:Deque
((Rec
g310660
(U (Boxof (U (-> (Pairof Integer g310660)) (Pairof Integer g310660)))
Null))
Integer
(Rec
g310663
(U (Boxof (U (-> (Pairof Integer g310663)) (Pairof Integer g310663)))
Null))
(Rec
g310666
(U (Boxof (U (-> (Pairof Integer g310666)) (Pairof Integer g310666)))
Null))
Integer
(Rec
g310669
(U (Boxof (U (-> (Pairof Integer g310669)) (Pairof Integer g310669)))
Null))))
#<Deque>
> (tail (empty Integer)) tail: given deque is empty
In the above example, (tail (deque 1 2 3 4 5 6)), removes the head of the given deque returns (deque 2 3 4 5 6).
> (init (deque 1 2 3 4 5 6))
- : #(struct:Deque
((Rec
g310703
(U (Boxof (U (-> (Pairof Integer g310703)) (Pairof Integer g310703)))
Null))
Integer
(Rec
g310706
(U (Boxof (U (-> (Pairof Integer g310706)) (Pairof Integer g310706)))
Null))
(Rec
g310709
(U (Boxof (U (-> (Pairof Integer g310709)) (Pairof Integer g310709)))
Null))
Integer
(Rec
g310712
(U (Boxof (U (-> (Pairof Integer g310712)) (Pairof Integer g310712)))
Null))))
#<Deque>
> (init (empty Integer)) init: given deque is empty
In the above example, (init (deque 1 2 3 4 5 6)), removes the last element 6 of the given deque and returns (deque 1 2 3 4 5).
procedure
(deque->list deq) → (Listof A)
deq : (Deque A)
> (deque->list (deque 10 2 34 4 15 6)) - : (Listof Integer)
'(10 2 34 4 15 6)
> (deque->list (map add1 (deque 1 2 3 4 5 6))) - : (Listof Integer)
'(2 3 4 5 6 7)
> (deque->list (map * (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6))) - : (Listof Integer)
'(1 4 9 16 25 36)
procedure
(foldl func init deq1 deq2 ...) → C
func : (C A B ... B -> C) init : C deq1 : (Deque A) deq2 : (Deque B)
foldl currently does not produce correct results when the given function is non-commutative.
> (foldl + 0 (deque 1 2 3 4 5 6)) - : Integer
21
> (foldl * 1 (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6)) - : Integer
518400
procedure
(foldr func init deq1 deq2 ...) → C
func : (C A B ... B -> C) init : C deq1 : (Deque A) deq2 : (Deque B)
foldr currently does not produce correct results when the given function is non-commutative.
> (foldr + 0 (deque 1 2 3 4 5 6)) - : Integer
21
> (foldr * 1 (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6)) - : Integer
518400
> (define que (deque 1 2 3 4 5 6)) > (deque->list (filter (λ: ([x : Integer]) (> x 5)) que)) - : (Listof Integer)
'(6)
> (deque->list (filter (λ: ([x : Integer]) (< x 5)) que)) - : (Listof Integer)
'(1 2 3 4)
> (deque->list (filter (λ: ([x : Integer]) (<= x 5)) que)) - : (Listof Integer)
'(1 2 3 4 5)
> (deque->list (remove (λ: ([x : Integer]) (> x 5)) (deque 1 2 3 4 5 6))) - : (Listof Integer)
'(1 2 3 4 5)
> (deque->list (remove (λ: ([x : Integer]) (< x 5)) (deque 1 2 3 4 5 6))) - : (Listof Integer)
'(5 6)
> (deque->list (remove (λ: ([x : Integer]) (<= x 5)) (deque 1 2 3 4 5 6))) - : (Listof Integer)
'(6)
procedure
(andmap func deq1 deq2 ...) → Boolean
func : (A B ... B -> Boolean) deq1 : (Deque A) deq2 : (Deque B)
> (andmap even? (deque 1 2 3 4 5 6)) - : Boolean
#f
> (andmap odd? (deque 1 2 3 4 5 6)) - : Boolean
#f
> (andmap positive? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (andmap negative? (deque -1 -2)) - : Boolean
#t
procedure
(ormap func deq1 deq2 ...) → Boolean
func : (A B ... B -> Boolean) deq1 : (Deque A) deq2 : (Deque B)
> (ormap even? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (ormap odd? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (ormap positive? (deque -1 -2 3 4 -5 6)) - : Boolean
#t
> (ormap negative? (deque 1 -2)) - : Boolean
#t
procedure
(build-deque size func) → (Deque A)
size : Natural func : (Natural -> A)
> (deque->list (build-deque 5 (λ:([x : Integer]) (add1 x)))) - : (Listof Integer)
'(1 2 3 4 5)
> (deque->list (build-deque 5 (λ:([x : Integer]) (* x x)))) - : (Listof Integer)
'(0 1 4 9 16)
> (head+tail (deque 1 2 3 4 5))
- : (Pairof
Integer
#(struct:Deque
((Rec
g311086
(U (Boxof (U (-> (Pairof Integer g311086)) (Pairof Integer g311086)))
Null))
Integer
(Rec
g311089
(U (Boxof (U (-> (Pairof Integer g311089)) (Pairof Integer g311089)))
Null))
(Rec
g311092
(U (Boxof (U (-> (Pairof Integer g311092)) (Pairof Integer g311092)))
Null))
Integer
(Rec
g311095
(U (Boxof (U (-> (Pairof Integer g311095)) (Pairof Integer g311095)))
Null)))))
'(1 . #<Deque>)
> (head+tail (build-deque 5 (λ:([x : Integer]) (* x x))))
- : (Pairof
Integer
#(struct:Deque
((Rec
g311112
(U (Boxof (U (-> (Pairof Integer g311112)) (Pairof Integer g311112)))
Null))
Integer
(Rec
g311115
(U (Boxof (U (-> (Pairof Integer g311115)) (Pairof Integer g311115)))
Null))
(Rec
g311118
(U (Boxof (U (-> (Pairof Integer g311118)) (Pairof Integer g311118)))
Null))
Integer
(Rec
g311121
(U (Boxof (U (-> (Pairof Integer g311121)) (Pairof Integer g311121)))
Null)))))
'(0 . #<Deque>)
> (head+tail (empty Integer)) head+tail: given deque is empty
> (last+init (deque 1 2 3 4 5))
- : (Pairof
Integer
#(struct:Deque
((Rec
g311155
(U (Boxof (U (-> (Pairof Integer g311155)) (Pairof Integer g311155)))
Null))
Integer
(Rec
g311158
(U (Boxof (U (-> (Pairof Integer g311158)) (Pairof Integer g311158)))
Null))
(Rec
g311161
(U (Boxof (U (-> (Pairof Integer g311161)) (Pairof Integer g311161)))
Null))
Integer
(Rec
g311164
(U (Boxof (U (-> (Pairof Integer g311164)) (Pairof Integer g311164)))
Null)))))
'(5 . #<Deque>)
> (last+init (build-deque 5 (λ:([x : Integer]) (* x x))))
- : (Pairof
Integer
#(struct:Deque
((Rec
g311181
(U (Boxof (U (-> (Pairof Integer g311181)) (Pairof Integer g311181)))
Null))
Integer
(Rec
g311184
(U (Boxof (U (-> (Pairof Integer g311184)) (Pairof Integer g311184)))
Null))
(Rec
g311187
(U (Boxof (U (-> (Pairof Integer g311187)) (Pairof Integer g311187)))
Null))
Integer
(Rec
g311190
(U (Boxof (U (-> (Pairof Integer g311190)) (Pairof Integer g311190)))
Null)))))
'(16 . #<Deque>)
> (last+init (empty Integer)) last+init: given deque is empty